3.3.70 \(\int \frac {\sec ^3(a+b x)}{(d \tan (a+b x))^{7/2}} \, dx\) [270]

Optimal. Leaf size=110 \[ -\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {4 \cos (a+b x) E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {d \tan (a+b x)}}{5 b d^4 \sqrt {\sin (2 a+2 b x)}} \]

[Out]

-4/5*cos(b*x+a)/b/d^3/(d*tan(b*x+a))^(1/2)+4/5*cos(b*x+a)*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*Ellipt
icE(cos(a+1/4*Pi+b*x),2^(1/2))*(d*tan(b*x+a))^(1/2)/b/d^4/sin(2*b*x+2*a)^(1/2)-2/5*sec(b*x+a)/b/d/(d*tan(b*x+a
))^(5/2)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 110, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {2688, 2695, 2652, 2719} \begin {gather*} -\frac {4 \cos (a+b x) E\left (\left .a+b x-\frac {\pi }{4}\right |2\right ) \sqrt {d \tan (a+b x)}}{5 b d^4 \sqrt {\sin (2 a+2 b x)}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[a + b*x]^3/(d*Tan[a + b*x])^(7/2),x]

[Out]

(-2*Sec[a + b*x])/(5*b*d*(d*Tan[a + b*x])^(5/2)) - (4*Cos[a + b*x])/(5*b*d^3*Sqrt[d*Tan[a + b*x]]) - (4*Cos[a
+ b*x]*EllipticE[a - Pi/4 + b*x, 2]*Sqrt[d*Tan[a + b*x]])/(5*b*d^4*Sqrt[Sin[2*a + 2*b*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2688

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^2*(a*Sec[e
 + f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1))), x] - Dist[a^2*((m - 2)/(b^2*(n + 1))), Int[(a*Sec[e
 + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && (GtQ[m, 1] || (Eq
Q[m, 1] && EqQ[n, -3/2])) && IntegersQ[2*m, 2*n]

Rule 2695

Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]*(Sqrt[b*
Tan[e + f*x]]/Sqrt[Sin[e + f*x]]), Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^3(a+b x)}{(d \tan (a+b x))^{7/2}} \, dx &=-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}+\frac {2 \int \frac {\sec (a+b x)}{(d \tan (a+b x))^{3/2}} \, dx}{5 d^2}\\ &=-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {4 \int \cos (a+b x) \sqrt {d \tan (a+b x)} \, dx}{5 d^4}\\ &=-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {\left (4 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}\right ) \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)} \, dx}{5 d^4 \sqrt {\sin (a+b x)}}\\ &=-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {\left (4 \cos (a+b x) \sqrt {d \tan (a+b x)}\right ) \int \sqrt {\sin (2 a+2 b x)} \, dx}{5 d^4 \sqrt {\sin (2 a+2 b x)}}\\ &=-\frac {2 \sec (a+b x)}{5 b d (d \tan (a+b x))^{5/2}}-\frac {4 \cos (a+b x)}{5 b d^3 \sqrt {d \tan (a+b x)}}-\frac {4 \cos (a+b x) E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {d \tan (a+b x)}}{5 b d^4 \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 1.02, size = 103, normalized size = 0.94 \begin {gather*} -\frac {2 \left (4 \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\tan ^2(a+b x)\right ) \sec ^2(a+b x)+3 \left (-2+\csc ^2(a+b x)+\csc ^4(a+b x)\right ) \sqrt {\sec ^2(a+b x)}\right ) \sin (a+b x) \sqrt {d \tan (a+b x)}}{15 b d^4 \sqrt {\sec ^2(a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[a + b*x]^3/(d*Tan[a + b*x])^(7/2),x]

[Out]

(-2*(4*Hypergeometric2F1[3/4, 3/2, 7/4, -Tan[a + b*x]^2]*Sec[a + b*x]^2 + 3*(-2 + Csc[a + b*x]^2 + Csc[a + b*x
]^4)*Sqrt[Sec[a + b*x]^2])*Sin[a + b*x]*Sqrt[d*Tan[a + b*x]])/(15*b*d^4*Sqrt[Sec[a + b*x]^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(986\) vs. \(2(121)=242\).
time = 0.34, size = 987, normalized size = 8.97

method result size
default \(\text {Expression too large to display}\) \(987\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(b*x+a)^3/(d*tan(b*x+a))^(7/2),x,method=_RETURNVERBOSE)

[Out]

1/5/b*(2*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b
*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)^3-4*E
llipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/
2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*cos(b*x+a)^3+2*((cos(b*x+a
)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(
1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)^2-4*EllipticE((-(cos(b*x+
a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/
sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*cos(b*x+a)^2-2*((cos(b*x+a)-1+sin(b*x+a))/sin(
b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(co
s(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)+4*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2
)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*(-(c
os(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*cos(b*x+a)-2*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b
*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*(-(cos(b*x+a)-1-
sin(b*x+a))/sin(b*x+a))^(1/2)+4*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2
)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))
^(1/2)+2*cos(b*x+a)^3*2^(1/2)-cos(b*x+a)^2*2^(1/2)-2*cos(b*x+a)*2^(1/2))*sin(b*x+a)/cos(b*x+a)^4/(d*sin(b*x+a)
/cos(b*x+a))^(7/2)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)^3/(d*tan(b*x+a))^(7/2),x, algorithm="maxima")

[Out]

integrate(sec(b*x + a)^3/(d*tan(b*x + a))^(7/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)^3/(d*tan(b*x+a))^(7/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >> Symbolic function elliptic_ec takes exactly 1 arguments (2 given)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{3}{\left (a + b x \right )}}{\left (d \tan {\left (a + b x \right )}\right )^{\frac {7}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)**3/(d*tan(b*x+a))**(7/2),x)

[Out]

Integral(sec(a + b*x)**3/(d*tan(a + b*x))**(7/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(b*x+a)^3/(d*tan(b*x+a))^(7/2),x, algorithm="giac")

[Out]

integrate(sec(b*x + a)^3/(d*tan(b*x + a))^(7/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (a+b\,x\right )}^3\,{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{7/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(a + b*x)^3*(d*tan(a + b*x))^(7/2)),x)

[Out]

int(1/(cos(a + b*x)^3*(d*tan(a + b*x))^(7/2)), x)

________________________________________________________________________________________